How fast is a raspberry PI 3/4 B

The answer is, depending on your needs, but you are not here to hear that now are you, so I did a little experiment, tailored specifically for a certain need that does not apply accross the board, but combined with other experiments online, this might give you an idea

The experiment is annotating an image with image magic plugin for PHP

Both running buster (Debian/Raspbian 10), both on PHP7.3 and everything fresh installed

the PC has 8GB of DDR3 Ram, and the PI 1GB of LPDDR2-900 SDRAM

The PC has a 12 year old “Intel(R) Core(TM)2 Quad CPU Q9450 @ 2.66GHz”

The PC was around 7 fold faster than the raspberry PI 3 (the mean of a trial of 20 runs, with all the files cached in ram by the linux kernel)

The trial was done with a discrete VGA card (AMD RADEON) and with the chipset’s own graphics card, results were identical (The VGA card did not have it’s drivers installed, so we don’t know if it might have an effect or not)

I am now moving into even older PCs to compare performance, and will report the results here again to see what the limiting factors might be

GPS / u-blox and Adafruit-Mediatek

The things i add here are primarily for my reference, but they could save you a lot of time, so here i am only covering the practical side, wikipedia can help you with the theory. things here are sort of in random order, so feel free to use your browser’s search facility.

I have the following positioning systems/chips/boards, so most of the stuff you will find here will relate to them

* V.KEL VK2828U7G5LF TTL Ublox GPS module with antenna: supports GPS, GALILEO, SBAS (WAAS, EGNOS, MSAS, GAGAN)
* K-172 USB GPS USB Receiver Dongle Adapter Smart Antenna Module For Gmouse Glonass, also running u-blox, Support NMEA 0183 and ublox binary protocol.
* The ADAFRUIT ultimate breakout board with the MTK3339 chip (Not U-BLOX), but rather mediatek

A-GPS and AssistNow:

The long story short: A-GPS seems to be when the satellite data is available in advance, whether you allow your system to download it from the internet as it goes, or you download it in advance and make it available to the system, it boils down to telling your system where the satellites are and their relevant data rather than wait for your device to download that data from the satellites at very low speeds (Sat data is downloaded at a maximum of 50 bits per second, so getting the data over the internet or from the SD card in your raspberry pi or arduino etc is much much faster).

AssistNow is how the U-Blox A-GPS works

1- A-GPS only work out of the box with u-center, the software by u-blox, on your raspberry PI or arduino, it will not work out of the box , to make it work you need to look online for software that does that (It’s on github)

the online edition is when the data is downloaded from the internet in real time (when it is needed), the AssistNow  offline is when you download “AlmanacPlus® Differential Almanac Correction Data” from the internet and store it with your device (On whatever is driving the device, be it a PC, laptop, raspberry pi, arduino etc…)

2- The adafruit GPS raspberry pi board does A-GPS in a different way, which works out of the box, they add a battery to the board, and once data is downloaded once, it stays on the board for as long as there is a battery 😉

 

 

BCACHE – how to setup

About this tutorial

Despite being lengthy, this tutorial is in fact easy and fast, I have split it to parts so that you can get down to business instantly if you need to.

Worth mentioning is that i think this simple procedure presents itself as rocket science, it is not, so advise you to dive in (experimenting on a separate computer first may be a good idea), again i assure you it is VERY STRAIGHT FORWARD, the length is because i am elaborating to make it easy.

Disclaimer

This is an effort to put all the information i need about bcache in one place for my referance and your benefit, but please beware, bcache should be run with backup (You will have to come up with things as raid will render the cache redundant for example and rsync for big files might make your CPU do a lot of work), in any case, i am not responsible and will not be held liable for any damage you may endure.

SSDs are the future

When it comes to SSDs, I would say they have come a long way in terms of price, and one day they will be replacing hard drives, I have no doubt about that, there is no advantage in a hard drive that an SSD can’t eventually match (You might argue that TBs written, maybe, but have you tried to check the reliability of a hard drive stressed to the level needed to achieve those TBs written ?).

What is bcache for

Spinning hard drives are fast beasts when it comes to sequential reads, but when it comes to random reads where the head has to go seek the data, they become very very slow, you can be reading at 200MB/s and suddenly drop to 2MB/s, While SSDs do not suffer this much from random reads, slower than sequential, yes, but nothing close to the gap you see in spinning disks, in a spinning disk, the speed difference can be 100 fold OR MORE.

History (Windows)

The earliest attempt that i can remember was Intel robson (2005), Intel robson or intel turbo memory was a feature in the Core 2 CPUs, but i don’t think it made it up to the Core I, it was not very popular and for a good reason, at the extra cost, OEMs could add more ram, not only would it be better for marketing, it also made more sense, as Windows was already introducing memory cache for disks with windows Vista.

Some time later, microsoft came up with Microsoft ReadyBoost (With windows Vista), readyboost relied on fast pen drives to cache the data from the spinning disk, it was not a very popular feature at the time for many reasons, the drawbacks is that they had to design it to be pulled out without affecting data integrity, making restrictions on the writing speed (Writethrough, can’t writeback), and still it was doing the stuff that RAM did perfectly. not to mention that affordable pen drives were not that fast to begin with.

Caching today.

As it is today, caching still makes sense, I would argue it makes more sense than ever, spinning hard disk drives are still much cheaper than SSDs, A good SSD, A 1 TB SSD from samsung is at around $340 for the EVO, and 460 for the pro (Jul 2017), compare that to the spinning disk, with a price tag averaging $40, and you will know that the difference is still around 10 fold, even more if you go up in size, So what do we do ?

The answer is cache the disk. now is a better time to use caching with super fast SSDs that employ wear leveling and are connected in a more stable and persistant connection (SATA inside the computer).

SSD caching On Windows.

On windows, the answer may be ISR (Intel Smart Responce), I have not tried it myself, but i have heard many good things about it, you get into your bios and set the disks are R.A.I.D, then use the Intel Management Engine software to cahce the spinning disk on the SSD, that simple.

I could almost swear INTEL had a software solution for this that was a bit pricy, but i can’t seem to find it, i remember watching a video about it many years ago.

In any case, I am not very experienced with windows, so I will just leave it here.

SSD disk caching on Linux

On Linux, there are many solutions, the one that i will be showing you how to use right now is bcache, because it is fast, efficient, and works on block devices.

So, I am assuming you have installed debian stretch (9), and you have logged in, and you have networking et al running, now, let us get to installing bcache, mind you, bcache has been part of the linux kernel since jessie or even before, so all you need is bcache-tools, in Jessie, you had to compile those with a few lines, in stretch, there is a package for it.

** BCACHE **

To help avoid the confusion, you can use your big hard disk before attaching an SSD, you can then, whenever you want, attach an SSD to it to start the performance gain.

Installing bcache tools in Debian Jessie (8)

** IF YOU ARE INSTALLING ON JESSIE, BCACHE TOOLS WERE NOT PACKAGED FOR JESSIE**

apt-get install git make gcc pkg-config uuid openssl util-linux uuid-dev libblkid-dev

git clone https://github.com/g2p/bcache-tools.git
cd /usr/src
cd bcache-tools
make
make install

** END OF FOR JESSIE **

Installing bcache tools in Debian Stretch (9)

apt-get install bcache-tools

Planning how to setup the drives

In this article, i will be setting up 2 separate disks that are not system disks, one is a 4TB spinning disk, the other is a 1TB SSD, there are a few rules that you need to be aware of though

1- You can cache as many backing devices as you wish with one SSD
2- You can not cache one backing device with more than one SSD

3- There are memory requirements for bcache, so for example dropping the disks in a 486 computer with 256mb ram and using iscsi is not a good idea .

My setup

The backing device is your large spinning disk, the caching device is the SSD

My backing device is a 4TB hard drive that is connected as /dev/sde
My caching device is a 1TB samsung 850evo (alignment considerations here since it is a tlc disk (the pro is MLC, works like a regular with no alignment issues)), connected as /dev/sdc

Setting up the backing device (sde), mounting and populating it with data

You may want to start with the following command to clear any existing filesystem from the drives (Change SDE with your own drive designation)

wipefs -a /dev/sde

Now, let’s format SDE as backing, and SDC as caching

1- Run parted for backing device

parted /dev/sde
mklabel gpt
mkpart primary ext4 0% 100%

2- Make it a bcache backing partition

Using make-bcache, you will use the -B switch to tell the system that this is the backing device, meaning the spinning disk

make-bcache -B /dev/sde1

output from the above will be something like

UUID:                   19d92bc8-8f49-479a-9480-33ca659b91b2
Set UUID:               0e3f386a-ec62-42b9-b0f3-025a09253946
version:                1
block_size:             1
data_offset:            16

3- Format it as ext4 or whatever filesystem you fancy

mkfs.ext4 /dev/bcache0

4- Mounting it like you would mount any other partition

mount /dev/bcache0 /hds/bcache0

5- If you like, you can now copy your data to it and get things ready before installing the caching device (before attaching the SSD as cache).

as i prefer to copy all the files to the spinning disk before attaching the SSD, since when we copy sequential, the SSD does not cache anyway, but the things it does cache are not the things we will use frequently, So i copy my files to it first, then i attach the SSD.

Setting up the caching device (sdc), then attaching it to the backing device

1- Create a partition on caching device (you chose the size you want to use as cache), but i would recommend that if you want to use the whole disk that you leave 10% unpartitioned for over-provisioning.

wipefs -a /dev/sdc

parted /dev/sdc
mklabel gpt
mkpart primary ext4 0% 90%

Using make-bcache, you will use the -C switch to tell the system that this is the caching device, meaning the solid state disk (SSD)

make-bcache -C /dev/sdc1

output from the above will be something like

UUID: eeda3570-eb1b-4983-8c53-76322a654585
Set UUID: 92dbf6ca-0f0b-44d5-b70e-8f1e7919838d
version: 0
nbuckets: 1716964
block_size: 1
bucket_size: 1024
nr_in_set: 1
nr_this_dev: 0
first_bucket: 1

Now, even if this is not for a technical purpose, just to give you the feel of this, try running the command below, the command should result in “no cache” because we did not attach a cache to it yet

cat /sys/block/bcache0/bcache/state

DO NOT Format the caching partition as ext4

this time, we won’t be formatting it in ext4 like the backing device above (think about it, the OS should see the backing device, and at some abstraction layer not even know about this one, so why would it have a file system other than the one that bcache itself understands), we will simply be attaching it to the disk.

Attaching the caching device

If you take a look at the result from make-bcache -C command, you will notice a Set UUID, we will need this unique ID to tell bcache what SSD to connect to what cache, the only cache we have so far is bcache0 as you can see from above, here is how we attach it.

echo 92dbf6ca-0f0b-44d5-b70e-8f1e7919838d > /sys/block/bcache0/bcache/attach

Now, if we run the command above again

cat /sys/block/bcache0/bcache/state

It should read “Clean” or “Dirty” instead of “no cache” (I would bet it reads clean at this stage), Depending on whether something has been written to it and still not in the backing device, or clean otherwise.

Setup all done, unless you want to fine tune it for your purpose, then read on.

Tuning the cache.

1- Caching mode

to inspect what caching mode we are using now

cat /sys/block/bcache0/bcache/cache_mode

Which will probably result in

[writethrough] writeback writearound none

By default, the system uses writethrough (better data integrity), but if you are like me, and have made 100% sure the electric won’t ever go down, or if you backup the data in real time, you might want to switch to writeback, writeback gives much faster write operations which is not necessarily a requierment for all applications.

echo writeback > /sys/block/bcache0/bcache/cache_mode

2- sequential read cutoff

The other thing you might wish to tune is the size of the sequential read/write cutoff, we want a size short enough to be worth caching, by default, it is 4MB, so that everything under 4MB sequential will be cached, I personally like to take that down to 1MB judging by the fact that files larger than 1MB do read pretty fast directly from the disk ! but surely, this will depend on your application and on experimentation with your application.

cache 1 megabyte and smaller

echo 1M > /sys/block/bcache0/bcache/sequential_cutoff

cache everything (special value, not the same mathematical logic of less than)

echo 0 > /sys/block/bcache0/bcache/sequential_cutoff

back to caching 4 mega bytes and smaller (default)

echo 4M > /sys/block/bcache0/bcache/sequential_cutoff

3- Percentage of dirty data to allow on SSD.

I personally like it the way it is (10% of the SSD’s size), but you can change that, and sometimes you have to temporarily change that for certain purposes)

Flush all dirty data to disk as soon as you can

echo 0 > /sys/block/bcache0/bcache/writeback_percent

Allow 10% dirty data

echo 10 > /sys/block/bcache0/bcache/writeback_percent

the first (Value 0) is very usefull when you want to disconnect the cache, to disconnect you want the dirty_data to be 0 on the SSD, so you can start by issuing the first line above, then as soon as all the data is flushed to the backing device, you can disconnect the SSD like i will be showing you further down.

Manipulating the setup

Sometimes, you want to change your SSD with a larger or smaller or newer one, other times, you want to disconnect it and use the backing device without a cahce, other times, you want to use the same caching device to cache more disks, here i will show you how

Assuming you want to disconnect the SSD, for this to happen, you will need to go through a couple of steps, first, make sure there is no dirty data, and second, detach it from the backing device

For the first step, we should inform bcache that we don’t want any dirty data, by default, bcache allows for 10% of the size of the SSD to be dirty data, we need to make that ZERO percent

echo 0 > /sys/block/bcache0/bcache/writeback_percent

remember, if you reattach or otherwise, you should set it back to ten percent in the same way

echo 10 > /sys/block/bcache0/bcache/writeback_percent

Monitoring cache and cache performance

1- How much dirty data is on the SSD, Assuming that “/sys/block/bcache0/bcache/state” reads dirty, you can see how much data is dirty with the command.

cat /sys/block/bcache0/bcache/dirty_data

2- Caching statistics

tail /sys/block/bcache0/bcache/stats_total/*

I7 930 VS I7 980, 180% faster, at least theoretically !

Update: After putting away this machine for many many years, I revisited it in 2025, had a few issues with ram and bios, here is the updated version

I upgrading my I7 930 to an I7 980 worth it ?

The answer is probably YES, the I7 980 at the time of writing cost me $135 used on ebay.

there are 2 extra cores in the CPU, so it is like having an extra dual core computer to share the RAM and any other resources, even without wasting more electrical power.

It is also the newer Gulftown architecture (32nm Lithography), compared to the older Bloomfield (45nm Lithography)

So how much computing power did i gain for this database server

i7 930: 3GHz * 8 = 24 total at turbo speed
i7 980: 3.6GHz * 12 = 43.2 total at turbo speed

That is 180% of the original
almost double the computing power for 100 dollars !

To make this more interesting, many are reporting the with the new bios update, the GA-X58A-UD3R will allow for 48GB of ram, not 24, I will be trying that soon.

Force mount hibernated NTFS volume

This problem is one i face often, because of how older versions functioned, the answers online no longer apply, online, you will find that

ntfsfix /dev/sdc2

should do the trick, in reality, it will not as you will see the following error

Mounting volume... OK
Processing of $MFT and $MFTMirr completed successfully.
Checking the alternate boot sector... OK
NTFS volume version is 3.1.
NTFS partition /dev/sdc1 was processed successfully.

The solution in reality is asking ntfs-3g’s mount to remove the hiberfile

WHAT YOU NEED – YOU WILL LOSE THE HIBERFILE

mount -t ntfs-3g -o remove_hiberfile /dev/sdc2 /hds/intelssd

Without the remove_hiberfile instruction, you will probably get an error message such as

Windows is hibernated, refused to mount.
Failed to mount '/dev/sdc2': Operation not permitted
The NTFS partition is in an unsafe state. Please resume and shutdown
Windows fully (no hibernation or fast restarting), or mount the volume
read-only with the 'ro' mount option.

Where you can actually mount it as read only if you do not want to write to it with the line

 mount -o ro /dev/sdc1 /hds/intelssd

Mounting a multipart vmdk disk on Linux

There are many ways to do that, one of which is using the tools provided by vmware to combine the disks into one and then mounting it with

kpartx -av mydisk.vmdk;

Then

mount -o /dev/mapper/loop0p1 /hds/disk

While another method, which is simpler

apt-get install qemu-utils
qemu-img convert disk-s001.vmdk s01.raw
....
qemu-img convert disk-s013.vmdk s13.raw
....
qemu-img convert disk-s032.vmdk s32.raw

The above will be sparse files, so you will not have disk usage as big as the file, a “df -h” should not result in any lost of disk space beyond the data that is used by files in the image

following the above, we need to combine the RAW files like so

cat s01.raw s02.raw s03.raw s04.raw s05.raw s06.raw s07.raw s08.raw s09.raw s10.raw s11.raw s12.raw s13.raw s14.raw s15.raw s16.raw s17.raw s18.raw s19.raw s20.raw s21.raw s22.raw s23.raw s24.raw s25.raw s26.raw s27.raw s28.raw s29.raw s30.raw s31.raw s32.raw > combined.raw
losetup /dev/loop0 combined.raw
kpartx -a /dev/loop0
mount /dev/mapper/loop0p1 /hds/img1

using guestmount

And finally, using guestmount (apt install libguestfs-tools)

guestmount -a xyz.vmdk -m /dev/sda3 --rw /mnt/vmdk
guestmount -a /path/to/myvmdk -i --rw /hds/usb

Windows 10 slow shutdown on SSD (Solved)

SSDs are the best thing that happened to computer boot time (and many other things) since the invention of the abacus

But for some reason, booting up is faster than shutting down, much faster, Shut downs are taking a long time (Or reboots)

So let me see what i can do about this

1- Windows ClearPageFileAtShutdown is something that happens before shut down, and is my first guess to why this is happening
So let us set the following key to zero (0) and see if this speeds up shutdown time.

HKEY_LOCAL_MACHINE\CurrentControlSet\Control\SessionManager\Memory Management then ClearPageFileAtShutdown set to (0)

This session should shut down slowly, the next time you boot, shutdown will be much faster.

The other thing that i am thinking is relevant is changing the location of the indexing service index files to my spinning disk, this is because the spinning disk has thousands of files, and i would like to keep my SSD fast for certain other applications.

Aligning your Samsung 840 EVO – Slow disk problem

This probably applies to both 840 evo and 850 evo, but not the EVO 840 PRO and the 850 evo pro because the pro are not TLC

All over the internet, people are saying that solid state drives don’t need to be aligned because they will scramble the used flash cells anyway for wear leveling.

This is absolutely NOT TRUE, although wear leveling does work that way (to put it in simple terms), the mapping algorithm that levels the writes maps blocks to other blocks.

So here is how it works, let us assume there was no wear leveling, when the partition is not properly aligned to a starting offset which is a multiple of the erase block size, writes and erase operations that should require the erasing of one block could end up erasing and writing to two blocks, now the block is a hardware restriction, so when the wear leveling algorithm selects a new location, the problem of erasing two cells instead of one is still valid.

Don’t take my word for it, mess up the alignment of one of your partitions, then examine reads and writes of 512 or 4K, both will be much slower.

Now, what you need to do is to align the file system to block size

Because this disk has a 1.5M erase block 1536 KiB and to be sure we want it to also align with 2048 KiB (Just in case the erase block is not the whole story), you can set the sector alignment value to 12288 (6144 KiB), which is a multiple of 1536 KiB and 2048 KiB.

So, in LINUX, even though it is usually correctly aligned by the partitioning software (And in windows it is already done for you and if not it can be done by samsung’s magician software), you can check the current alignment with.

fdisk -l /dev/sdb

For your own math, the EBS (Erase block size) on those drives is 1.5MBs

So basically, 12288 is 3*4k, the three comes from the fact that it is a three level cell (TLC)

The best computer – tv setup for your living room

The best computer-tv setup for your living room

Here, i am posting this to remind myself of how to setup my media center at home, so it can be a bit messy

Kodi (XBMC) seems to be the only real competitor to Windows Media center, in my case, i feel it is much better than Windows Media Center.

Hardware

The raspberry PI 2 (With 1 GB ram) can function as the hardware with it’s HDMI output

Or

An old PC, with cooling switched to passive watter cooling (Cost me around $40 on ebay for the parts) to get rid of the noisy fan, and with the hard drive replaced by a bootable linux flash stick (Also to reduce noise)

Please note that the analogue (D-SUB / VGA) cable is just as good as HDMI, analogue signal over such a short distance is not a problem, so you can connect the D-SUB to your TV or the HDMI cable, you will not notice the difference. But you will need to connect audio to external speakers or something.

The disadvantage of the old PC method are

The cooling system costs half as much as a raspberri PI ! alot of money i would say.
The PC is bulky compared to the PI
Draws much more power than the PI

The advantages

You already have that old PC
You can use Kodi on Windows, then use your IPAD as a keyboard and mouse (No such app exists for linux yet)
You can use it for more general purpose purposes later on
It’s eithernet port is not provided through USB like the PI
You can have much more RAM on it
You can add an input card to it and connect your home receiver to it
You can install hard drives inside (Remember to make them spin down when not in use) and then use it as NAS
You can install an IR receiver on the com port and use LIRC to program any remote you have
It can play DVDs (If it has a DVD player)

———————————————-

Plugins that i like for Kodi

Connecting the raspberry pi to a wifi network with a static IP

This is a simple thing, there is nothing special about the PI, first, connect it to a wireless dongle (USB is your only option anyways), then create a file with your network settings, because of the scenario this is written for, and it is written as a reference for someone, I will connect it to an android hotspot, the subnet here is specific to android, others should use your own according to their router.

1- create the following file at /etc/wpa_supplicant/wpa_supplicant.conf

network={
ssid="isam"
psk="abcabc1234"
proto=RSN
key_mgmt=WPA-PSK
pairwise=CCMP
auth_alg=OPEN
}

Now, modify the file /etc/network/interfaces

For Signal quality and other relevant information, use the following command

iwconfig